3.28 \(\int (A+C \cos ^2(c+d x)) (b \sec (c+d x))^{5/2} \, dx\)

Optimal. Leaf size=78 \[ \frac {2 b^2 (A+3 C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \sec (c+d x)}}{3 d}+\frac {2 A b^2 \tan (c+d x) \sqrt {b \sec (c+d x)}}{3 d} \]

[Out]

2/3*b^2*(A+3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+
c)^(1/2)*(b*sec(d*x+c))^(1/2)/d+2/3*A*b^2*(b*sec(d*x+c))^(1/2)*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {3238, 4046, 3771, 2641} \[ \frac {2 b^2 (A+3 C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \sec (c+d x)}}{3 d}+\frac {2 A b^2 \tan (c+d x) \sqrt {b \sec (c+d x)}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[(A + C*Cos[c + d*x]^2)*(b*Sec[c + d*x])^(5/2),x]

[Out]

(2*b^2*(A + 3*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/(3*d) + (2*A*b^2*Sqrt[b*Se
c[c + d*x]]*Tan[c + d*x])/(3*d)

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3238

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 4046

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> -Simp[(C*Cot[
e + f*x]*(b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x]
/; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rubi steps

\begin {align*} \int \left (A+C \cos ^2(c+d x)\right ) (b \sec (c+d x))^{5/2} \, dx &=b^2 \int \sqrt {b \sec (c+d x)} \left (C+A \sec ^2(c+d x)\right ) \, dx\\ &=\frac {2 A b^2 \sqrt {b \sec (c+d x)} \tan (c+d x)}{3 d}+\frac {1}{3} \left (b^2 (A+3 C)\right ) \int \sqrt {b \sec (c+d x)} \, dx\\ &=\frac {2 A b^2 \sqrt {b \sec (c+d x)} \tan (c+d x)}{3 d}+\frac {1}{3} \left (b^2 (A+3 C) \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 b^2 (A+3 C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \sec (c+d x)}}{3 d}+\frac {2 A b^2 \sqrt {b \sec (c+d x)} \tan (c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.26, size = 58, normalized size = 0.74 \[ \frac {2 b^2 \sqrt {b \sec (c+d x)} \left ((A+3 C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+A \tan (c+d x)\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + C*Cos[c + d*x]^2)*(b*Sec[c + d*x])^(5/2),x]

[Out]

(2*b^2*Sqrt[b*Sec[c + d*x]]*((A + 3*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + A*Tan[c + d*x]))/(3*d)

________________________________________________________________________________________

fricas [F]  time = 0.53, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (C b^{2} \cos \left (d x + c\right )^{2} + A b^{2}\right )} \sqrt {b \sec \left (d x + c\right )} \sec \left (d x + c\right )^{2}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*(b*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral((C*b^2*cos(d*x + c)^2 + A*b^2)*sqrt(b*sec(d*x + c))*sec(d*x + c)^2, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (C \cos \left (d x + c\right )^{2} + A\right )} \left (b \sec \left (d x + c\right )\right )^{\frac {5}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*(b*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*(b*sec(d*x + c))^(5/2), x)

________________________________________________________________________________________

maple [C]  time = 0.32, size = 199, normalized size = 2.55 \[ -\frac {2 \left (-1+\cos \left (d x +c \right )\right ) \left (i A \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )+3 i C \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )-A \cos \left (d x +c \right )+A \right ) \cos \left (d x +c \right ) \left (1+\cos \left (d x +c \right )\right )^{2} \left (\frac {b}{\cos \left (d x +c \right )}\right )^{\frac {5}{2}}}{3 d \sin \left (d x +c \right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)*(b*sec(d*x+c))^(5/2),x)

[Out]

-2/3/d*(-1+cos(d*x+c))*(I*A*sin(d*x+c)*cos(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*E
llipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)+3*I*C*sin(d*x+c)*cos(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+c
os(d*x+c)))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)-A*cos(d*x+c)+A)*cos(d*x+c)*(1+cos(d*x+c))^2*(b/cos
(d*x+c))^(5/2)/sin(d*x+c)^3

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (C \cos \left (d x + c\right )^{2} + A\right )} \left (b \sec \left (d x + c\right )\right )^{\frac {5}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*(b*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*(b*sec(d*x + c))^(5/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + C*cos(c + d*x)^2)*(b/cos(c + d*x))^(5/2),x)

[Out]

int((A + C*cos(c + d*x)^2)*(b/cos(c + d*x))^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)*(b*sec(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________